Chinese scientists implant 3D printed tissue into monkeys – Financial Times


December 14, 2016 Facebook Twitter LinkedIn Google+ 3D Printed Articles


Chinese scientists have successfully implanted 3D printed blood vessels made from stem cells into rhesus monkeys, marking an important step towards printing blood vessels and other organs for human transplants.

“It is groundbreaking work that will change the way regenerative medicine will develop,” said Sir Alfred Cuschieri, a professor at Dundee university, who has visited the scientific team from biotech group Sichuan Revotek several times and hopes to bring it into international partnerships. “They are well ahead of the west.”

Scientists around the world are racing to construct biosynthetic organs that could begin to make up for the shortage of organs from human donors. One technique is to lay down living cells through a miniaturised 3D printer. Russian biotechnology group 3D Bioprinting Solutions recently reported that it had successfully transplanted a 3D-printed thyroid gland into a mouse.

Revotek, based in the southwestern province of Sichuan, used a 3D printer filled with ‘ink’ made from stem cells — building blocks that can become any cell in the body — to print prototype blood vessels about 2cm long. These were then implanted into the chests of 30 rhesus monkeys.

One month after implantation, the stem cells in the artificial vessels had grown into the different kinds of cells that make up natural blood vessels, and over time they became “indistinguishable” from the monkeys’ original vessels, according to Revotek.

James Kang, lead scientist on the Revotek project who began working on stem cells in the US in the 1990s, said the research could benefit the 156m people every year worldwide who need artificial blood vessels or vessel support structures.

Helen Meese, head of healthcare at the Institution of Mechanical Engineers in London, said Revotek’s work was a “very exciting result for the global biotech community”. She added: “Most of the research so far has been small-scale testing in laboratories. Scaling up is the next big challenge, and this is a big step in that direction.”

Donald Thomason, executive director of the Molecular Resource Center at the University of Tennessee, said when Revotek presented its results: “Although the 3D printing of biological materials is developing around the world, this project’s result . . . is the most mature I’ve seen.

“The costs of some transplants are very high . . . but using stem cells harvested from the same body, in the long term, the costs should be much lower.”

Ms Meese said the results needed to be published and the procedure replicated by labs elsewhere. She estimated that it would take 20 years or more before more complex 3D-printed organs such as hearts or kidneys were transplanted into human patients.

Revotek now plans to run a second trial with a larger sample of monkeys.

Chinese scientists have successfully implanted 3D printed blood vessels made from stem cells into rhesus monkeys, marking an important step towards printing blood vessels and other organs for human transplants.

“It is groundbreaking work that will change the way regenerative medicine will develop,” said Sir Alfred Cuschieri, a professor at Dundee university, who has visited the scientific team from biotech group Sichuan Revotek several times and hopes to bring it into international partnerships. “They are well ahead of the west.”

Scientists around the world are racing to construct biosynthetic organs that could begin to make up for the shortage of organs from human donors. One technique is to lay down living cells through a miniaturised 3D printer. Russian biotechnology group 3D Bioprinting Solutions recently reported that it had successfully transplanted a 3D-printed thyroid gland into a mouse.

Revotek, based in the southwestern province of Sichuan, used a 3D printer filled with ‘ink’ made from stem cells — building blocks that can become any cell in the body — to print prototype blood vessels about 2cm long. These were then implanted into the chests of 30 rhesus monkeys.

One month after implantation, the stem cells in the artificial vessels had grown into the different kinds of cells that make up natural blood vessels, and over time they became “indistinguishable” from the monkeys’ original vessels, according to Revotek.

James Kang, lead scientist on the Revotek project who began working on stem cells in the US in the 1990s, said the research could benefit the 156m people every year worldwide who need artificial blood vessels or vessel support structures.

Helen Meese, head of healthcare at the Institution of Mechanical Engineers in London, said Revotek’s work was a “very exciting result for the global biotech community”. She added: “Most of the research so far has been small-scale testing in laboratories. Scaling up is the next big challenge, and this is a big step in that direction.”

Donald Thomason, executive director of the Molecular Resource Center at the University of Tennessee, said when Revotek presented its results: “Although the 3D printing of biological materials is developing around the world, this project’s result . . . is the most mature I’ve seen.

“The costs of some transplants are very high . . . but using stem cells harvested from the same body, in the long term, the costs should be much lower.”

Ms Meese said the results needed to be published and the procedure replicated by labs elsewhere. She estimated that it would take 20 years or more before more complex 3D-printed organs such as hearts or kidneys were transplanted into human patients.

Revotek now plans to run a second trial with a larger sample of monkeys.

Source from..

Comments